Dipartimento d'Ingegneria


Scritto da  Venerdì, 21 Marzo 2014 08:52

Recurrent neural network for approximate nonnegative matrix factorization

Giovanni Costantini, Renzo Perfetti, Massimiliano Todisco



A recurrent neural network solving the approximate nonnegative matrix factorization (NMF) problem is presented in this paper. The proposed network is based on the Lagrangian approach, and exploits a partial dual method in order to limit the number of dual variables. Sparsity constraints on basis or activation matrices are included by adding a weighted sum of constraint functions to the least squares reconstruction error. However, the corresponding Lagrange multipliers are computed by the network dynamics itself, avoiding empirical tuning or a validation process. It is proved that local solutions of the NMF optimization problem correspond to as many stable steady-state points of the network dynamics. The validity of the proposed approach is verified through several simulation examples concerning both synthetic and real-world datasets for feature extraction and clustering applications.

To be published in Neurocomputing (2014)

Letto 36530 volte Ultima modifica il Venerdì, 21 Marzo 2014 08:58
Altro in questa categoria: « ARTICOLO LIBRO »

Lascia un commento

Assicurati di inserire (*) le informazioni necessarie ove indicato.
Codice HTML non è permesso.


Questo sito utilizza i cookies, anche di terze parti, per le statistiche e per agevolare la navigazione nelle pagine del sito. Maggiori informazioni disponibili nell’informativa sulla privacy. Per saperne di piu'